

VERSITY

College of Veterinary Medicine

INTRODUCTION

Aging is associated with endothelial dysfunction, contributing to impaired microvascular function cardiovascular increased disease risk and Adiponectin, an adipokine, anti-inflammatory supports vascular homeostasis by exerting activity through its surface ceramidase cell and AdipoR2. This receptors, AdipoR1 activity reduces ceramide accumulation and promotes sphingosine-1-phosphate (S1P) signaling, which endothelial nitric oxide enhances synthase activation and flow-mediated vasodilation. With adiponectin activity declines, potentially aging, disrupting this lipid signaling balance and impairing endothelial function.

ANIMAL MODEL

Cre+/+ mice were mated with **AdipoLox+/+** mice to produce heterozygous Adipo CreLox+/- mice, which were then bred to generate **Adipo CreLox+/+** mice. These Adipo CreLox+/+ mice have <u>normal levels of circulating adiponectin, which</u> can be depleted upon tamoxifen administration.

Table 1. Circulating Adiponectin in Genotypes						
Group (n)	Adipo Lox+/+ (3)	Cre+/+ (3)	Cre+/+ post- TAM (4)	Adipo CreLox+/+ post-TAM (5)	Adipo CreLox+/- post-TAM (3)	
Adiponectin (µg/mL)	6.58±2.44	6.81±1.96	6.76±1.27	0.88±0.39	4.49±0.44	

HYPOTHESIS

Aging and acute adiponectin depletion impair flow-mediated vasodilation in skeletal muscle arterioles through disruption of S1P signaling.

Age-related endothelial dysfunction reflects disruption of adiponectin-S1P mediated mechanotransduction

Steven Medarev¹, Tristan Driscoll², Judy Muller-Delp³, and Jose Pinto¹ ¹Florida State University, College of Medicine; ²Florida State University, College of Engineering; ³Kansas State University, College of Veterinary Medicine

FLOW-MEDIATED DILATION IN YOUNG & OLD MICE UNDER DIFFERENT CONDITIO

(A) Young WT mice exhibited significantly greater flow-mediated vasodilation (FMD) compared to young AdipoKO mice, highlighting the importance of adiponectin in endothel (B) In young WT mice, DMS treatment significantly reduced FMD, bringing it to levels even lower than those observed in young AdipoKO mice, indicating that S1P signaling plater of a substantial function (C) In young AdipoKO mice, DMS treatment also reduced FMD, though not as much as in young WT mice, suggesting that adiponectin deficiency alrea substantial impairment in flow-induced vasodilation, with only a partial additional effect from S1P inhibition. (D) Old WT mice showed significantly reduced FMD compared to mice, indicating that aging impairs endothelial function. (E) In young WT mice, DMS treatment significantly reduced FMD, demonstrating the critical role of S1P signaling in endothelial function in response to flow. (F) In old WT mice, FMD was not significantly altered by DMS treatment, suggesting that aging is associated with a loss of S1F endothelial function that is not further impacted by S1P inhibition. (G) Young WT mice treated with DMS exhibited similar FMD responses to old WT mice. Three-way ANOVA with paging results in a loss of endothelial function that is not further modulated by S1P inhibition. Values are averages ± SEM, where n is the number of mice. Three-way ANOVA with paging results in a loss of endothelial function. post hoc test, where *p<0.05, **p<0.01, ***p<0.001.

NS	SUMMARY
]##	1. Impaired Vasodilation in Aging and AdipoKO: Arterioles from old WT and young AdipoKO mice showed reduced vasodilation compared to young WT mice.
	2. DMS Treatment Effects: DMS treatment lowered vasodilation in young WT mice comparable to levels seen in old WT and AdipoKO mice.
	3. S1P-Dependent Dysfunction: DMS had less or no additional effect in AdipoKO and old WT arterioles respectively, indicating impaired S1P- dependent vasodilation.
mH2O)	CONCLUSION
mH2O) nelial function. plays a crucial ready leads to d to young WT in maintaining 1P-dependent uggesting that ith Bonferroni	Aging disrupts adiponectin-S1P signaling, impairing flow-mediated vasodilation, likely due to a loss of adiponectin's ceramidase activity. Our findings establish adiponectin as a key regulator of endothelial function, with its decline contributing to vascular dysfunction. The
nH2O) nelial function. plays a crucial ready leads to to young WT in maintaining 1P-dependent ggesting that th Bonferroni	Aging disrupts adiponectin-S1P signaling, impairing flow-mediated vasodilation, likely due to a loss of adiponectin's ceramidase activity. Our findings establish adiponectin as a key regulator of endothelial function, with its decline contributing to vascular dysfunction. The greater reduction in vasodilation following N,N-dimethylsphingosine (DMS) treatment in WT mice compared to AdipoKO mice supports the role of adiponectin in S1P- mediated endothelial function. The partial preservation of vasodilation in old and AdipoKO mice suggests compensatory mechanisms, such as H ₂ O ₂ -mediated
Theorem in the probability of th	Aging disrupts adiponectin-S1P signaling, impairing flow-mediated vasodilation, likely due to a loss of adiponectin's ceramidase activity. Our findings establish adiponectin as a key regulator of endothelial function, with its decline contributing to vascular dysfunction. The greater reduction in vasodilation following N,N-dimethylsphingosine (DMS) treatment in WT mice compared to AdipoKO mice supports the role of adiponectin in S1P- mediated endothelial function. The partial preservation of vasodilation in old and AdipoKO mice suggests compensatory mechanisms, such as H ₂ O ₂ -mediated vasodilation, may help offset impaired S1P signaling. Future studies will test whether adiponectin agonists can restore endothelial function in aging and AdipoKO mice. Additional work will explore alternative vasodilatory pathways, including the roles of nitric oxide and H ₂ O ₂ , using L-NAME and catalase, to further understand vascular adaptation to
Theorem in the provided state of the provide	Aging disrupts adiponectin-S1P signaling, impairing flow-mediated vasodilation, likely due to a loss of adiponectin's ceramidase activity. Our findings establish adiponectin as a key regulator of endothelial function, with its decline contributing to vascular dysfunction. The greater reduction in vasodilation following N,N-dimethylsphingosine (DMS) treatment in WT mice compared to AdipoKO mice supports the role of adiponectin in S1P- mediated endothelial function. The partial preservation of vasodilation in old and AdipoKO mice suggests compensatory mechanisms, such as H ₂ O ₂ -mediated vasodilation, may help offset impaired S1P signaling. Future studies will test whether adiponectin agonists can restore endothelial function in aging and AdipoKO mice. Additional work will explore alternative vasodilatory pathways, including the roles of nitric oxide and H ₂ O ₂ , using L-NAME and catalase, to further understand vascular adaptation to adiponectin deficiency.
nH2O) nelial function, leady leads to to young WT naintaining P-dependent uggesting that th Bonferront	Aging disrupts adiponectin-S1P signaling, impairing flow-mediated vasodilation, likely due to a loss of adiponectin's ceramidase activity. Our findings establish adiponectin as a key regulator of endothelial function, with its decline contributing to vascular dysfunction. The greater reduction in vasodilation following N,N-dimethylsphingosine (DMS) treatment in WT mice compared to AdipoKO mice supports the role of adiponectin in S1P- mediated endothelial function. The partial preservation of vasodilation in old and AdipoKO mice suggests compensatory mechanisms, such as H ₂ O ₂ -mediated vasodilation, may help offset impaired S1P signaling. Future studies will test whether adiponectin agonists can restore endothelial function in aging and AdipoKO mice. Additional work will explore alternative vasodilatory pathways, including the roles of nitric oxide and H ₂ O ₂ , using L-NAME and catalase, to further understand vascular adaptation to adiponectin deficiency.

supported by National Institute on Aging (NIA) R01HL166591-01

National Institute on Aging